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Abstract. The wear of steel balls in continuously operated grinding mills, used in mineral processing to com-
minute metalliferous rocks, can be described by a simple population-balance model. This model gives rise to a
scalar transport equation with a singular source term for the number density of balls as a function of size and time.
Exact solutions to this equation are determined under the assumption of a simple power-law type wear law. It is
shown that a particular term proposed in the engineering literature that describes the removal of used balls from
the mill leads to negative solutions (Model 1). An alternative, more realistic term for the sieve action, which admits
nonnegative solutions only, is introduced (Model 2). A working first-order finite-difference scheme for Model 2
and a second-order TVD variant are introduced and applied for numerical simulations along with an error study.
A weak solution concept for Model 2 is proposed, uniqueness of weak solutions is shown, and convergence of the
first-order scheme to a weak solution is established. These results hold for a general class of wear laws, not just
power-law type.

Key words: finite-difference scheme, linear transport equation, numerical simulation, population balance model,
TVD scheme, uniqueness and existence

1. Introduction

Population-balance models were formulated for chemical-engineering purposes in the celeb-
rated paper by Hulburt and Katz [1]. Currently, these models are widely used to describe
and control a wide range of particulate processes including comminution, crystallization,
granulation, flocculation, combustion, and polymerization [2]. In general, these models refer
to dispersed systems that include both extensional and internal space-type coordinates, and in
which the dispersed particles (or droplets) that form a population interact with each other,
which includes collision, breakage, coalescence, and agglomeration processes. Moreover,
these models include ‘birth’ and ‘death’ processes, which take place, for examples, when
particles are added to or sieved out from the population. In general, population-balance models
are governed by integro-differential equations for the distribution density of the particles of
the population.

The early engineering literature on population-balance modeling in various fields also in-
cludes, besides [1], the papers by Randolph and Larson [3] (who seem to be the first to use
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the term ‘population balance’), Valentas, Bilous and Amundson [4], Valentas and Amundson
[5], Frederickson, Ramkrishna and Tsuchiya [6], and Sastry and Fuerstenau [7]. The current
standard reference on the theory, simulation, and applications of these models in engineering
is the book by Ramkrishna [8]. Recent works on general-population balance modeling that
do not refer to a specific dispersed system include the papers by Verkoeijen et al. [2] and
McCoy [9], while a thorough review of the state of the art in numerical techniques along with
an exhaustive list of references is offered in the very recent paper by Attarakih, Bart and Faqir
[10].

In this paper, we consider a very simple population-balance model for the wear of steel
balls that are used in grinding mills to aid the crushing of minerals [11, Chapter 20]. These
balls are assumed to be made of the same material, and the only property in which they differ is
the size x, which is the only coordinate that appears (besides time) in our population-balance
model. Since the steel consumption due to ball wear is a decisive cost factor in the operation
of a ball mill, there is considerable engineering interest in identifying the appropriate wear
law, in mathematical models predicting the ball size distribution, and in implementing them,
for example, to optimize the make-up ball charge in a grinding mill (see [12–15]). We also
mention that variants of the model presented herein that include impact energy distribution
and cylindrical grinding media (rather than balls) were proposed by Datta and Rajamani [16]
and Yildirim and Austin [17], respectively.

We are interested in determining the ball-size distribution as a function of time. The sought
quantity is the number density u = u(x, t) as a function of ball size x and time t , where by the
‘size’ of a ball we always mean its diameter. Thus, the number of balls having size between
xa and xb at time t is given by

n(xa, xb, t) =
∫ xb

xa

u(ξ, t)dξ.

We assume that the rate of decrease of the diameter of a ball of size x is given by a function
g = g(x). A frequently used equation is

g(x) = α(x/x0)
β, 0 ≤ β ≤ 1, α < 0, (1.1)

where x0 is a reference size and the parameter α describes the rate of size decrease of a
single ball under milling operation, and therefore has the dimension of a velocity. Actually,
the parameter α measures the quality of the material the steel balls are manufactured of; high-
quality balls are made of relatively hard material and will lead to a low absolute value of
α, while low-quality balls will be ground more rapidly and imply large absolute values of α.
Typical values of α for steel balls of one to four inches in diameter range from −0·05 to −0·01
millimeters per hour, see [13, 14].

In the mineral-processing literature, the dimensionless parameter β is sometimes referred
to as ‘Austin-Klimpel parameter’ [18]. The value β = 0 corresponds to the Bond wear law
[19, 20], stating that the wear rate of a ball is proportional to its surface area, while β = 1
is the Davis wear law [21] postulating that the wear rate is proportional to the ball volume.
The former case corresponds to an abrasive mechanism of ball-size reduction and the latter to
an impactive one. Real ball mills usually exhibit a combination of both mechanisms, which
suggests admitting the whole parameter interval β ∈ [0, 1]. Furthermore, we assume that the
grinding process is controlled by the total number feed rate QF(t) of new balls at the inlet
of the mill, expressed as number of balls per time unit, and by the relative number frequency
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mF(x) of balls of size x at the inflow. The dimension of mF(x) is the inverse of size, since
integrating mF(x) over a size interval x ∈ [a, b] yields the relative frequency of balls having
size between a and b. This relative frequency is a dimensionless number between zero and
one.

The new balls are assumes to have the p discrete sizes x1 > x2 > · · · > xp . The discharge
of balls is controlled by a sink term qD = qD(x, t, u), which also has the unit of number of
balls per time unit. We will discuss two alternative specific choices for this term later. Under
the present assumptions and letting δ(·) denote the usual Dirac δ function, we can state the
governing equation of the population-balance model as

∂u

∂t
+ ∂

∂x
(g(x)u(x, t)) = QF(t)

p∑
k=1

mk
Fδ(x − xk) − qD(x, t, u), (1.2)

where mk
F := mF(x

k) and we assume that an initial particle size distribution is given as

u(x, 0) = u0(x), x ∈ [
0, xp

]
. (1.3)

Equation (1.2) can be written in conservative form as

∂u

∂t
+ ∂

∂x

(
g(x)u(x, t) − QF(t)

p∑
k=1

mk
FH(x − xk) + QD(t)H(x − xmin)

)

= −qD(x, t, u), (1.4)

where H(·) is the Heaviside function. Equation (1.4) is a first-order transport equation with a
discontinuous coefficient and a source term. We consider (1.4) on the domain

�T := {(x, t) : 0 < x < X, 0 < t < T } , �T := �T ∪ ∂�T , (1.5)

where X is a maximum ball size with X > x1, where x1 is the size of the largest feed balls.
Recall that balls are always ground to smaller size, so u(X, t) = 0 for t ∈ (0, T ] arises as a
natural boundary condition for (1.4).

The remainder of this paper is organized as follows. In Section 2 we first derive a closed-
form solution with g(x) given by (1.1) and the term qD(x, t, u) used in [13, 14], denoted by
‘Model 1’. It turns out that this choice implies negative number densities in certain cases. We
propose an alternative discharge term qD(x, t, u), which models the sieve, through which the
used balls are discharged, more realistically. This alternative model is referred to as ‘Model 2’.
Exact solutions to Model 2 combined with the wear law (1.1) are determined and visualized for
five different combinations of the parameters α and β. We illustrate that solutions of Model 2
are nonnegative but in general unbounded.

In general it may become complicated to derive closed-form solutions. Moreover, even if
‘representation formulas’ for the solutions can be found, they typically involve integrals that
must be evaluated numerically. Hence, numerical schemes to produce approximate solutions
may be desirable. The design of such schemes is the topic of Section 3. In Subsection 3.1 we
introduce a simple first-order upwind difference scheme, while in Subsection 3.2 we present a
novel second-order version of the scheme. The novelty of this algorithm lies in our choice of a
regularity condition to enforce. Our motivation here is that the actual solution of a conservation
law with discontinuous coefficients is not itself Total Variation Diminshing (TVD), whereas
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its flux does have this regularity property. We refer to this property as flux-TVD. Thus, in
our second-order scheme, we apply flux limiters that enforce the flux-TVD property, rather
than the standard TVD property for nonlinear conservation laws. Section 4 presents numerical
simulations and an error study for Model 2 for three values of β, using both the first-order and
the second-order schemes. Both schemes accurately approximate the stationary jumps in the
solution located at x = x1, . . . , xp at any discretization. Away from these locations, jumps of
the solution are smeared out by by artificial diffusion, where the degree of smearing depends
on the spatial accuracy and order of the method. This is, of course, the well-known behaviour
ot standard schemes for conservation laws [22].

The numerical examples and recorded errors illustrate the gain in accuracy attained by
using the second-order variant of the scheme for transient solutions. On the other hand, we
see that due to the presence of stationary discontinuities, large time, near steady state solutions
are approximated to at most first-order (in the L1 sense) by both schemes.

On the rigorous mathematical side, we have included in this paper two appendices on the
analysis of Model 2. As candidate solutions are in general discontinuous, they need to be
defined as weak solutions. The unboundedness of solutions requires that we also introduce a
particular weighted L1 norm. The solution concept along with a statement of the assumptions
is presented in Appendix A, which also includes a uniqueness theorem for weak solutions. As
a theoretical justification of our numerical scheme, we prove in Appendix B that the first-order
version of our scheme converges as the discretization parameters tend to zero to the unique
weak solution of Model 2. A feature of our analysis is that we establish compactness of the
numerical flux, not the numerical solution itself, by bounding its total variation. The specific
design of the second order scheme in Subsection 3.2 is motivated by this feature.

2. The ball mill models and closed-form solutions

2.1. MODEL 1

Models 1 and 2 differ in the description of the discharge mechanism. According to Menacho
and Concha [13, 14], there exists a size xmin at which the balls leave the mill. Balls of this size
are extracted at the prescribed discharge number rate QD(t) ≥ 0, such that

qD(x, t, u) = QD(t)δ(x − xmin). (2.1)

We now determine an exact solution to Model 1, that is, to (1.2) (or (1.4)) with the initial
condition (1.3) and (2.1). Using the method of characteristics for the homogeneous problem

∂u

∂t
+ ∂

∂x
(g(x)u) = 0, u(x, 0) = u0(x),

we obtain the homogeneous solution

uH(x, t) = g(ξ(x, t))

g(x)
u0(ξ(x, t)),

where ξ(x, t) is the location where the backward characteristic through (x, t) intersects the
x-axis. An explicit formula for ξ(x, t) when g(x) is given by (1.1) is

ξ(x, t) =




x exp(−αt/x0) for β = 1,[
x1−β − α

x
β

0

(1 − β)t

] 1
1−β

for β < 1.
(2.2)
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Note that ξ(x, 0) = x, and ξ(x, t) > x for t > 0, since the characteristics flow from right to
left in the x-t plane. For the inhomogeneous problem with right-hand side R(x, t), i.e.,

∂u

∂t
+ ∂

∂x
(g(x)u) = R(x, t), u(x, 0) = u0(x),

an application of Duhamel’s principle [23] yields

u(x, t) = uH(x, t) +
∫ t

0

g(ξ(x, t − s))

g(x)
R(ξ(x, t − s), s)ds.

When R = R(x), it is possible to simplify the inhomogeneous portion of the solution by
making a change of variables. We let σ = ξ(x, t − s) and after some algebra, discover that ds

= dσ/g(σ ). The solution then reduces to

u(x, t) = uH(x, t) − 1

g(x)

∫ ξ(x,t)

x

R(σ )dσ = uH(x, t) + 1

g(x)

∫ x

ξ(x,t)

R(σ )dσ.

When the right-hand side R takes the following specific form:

R(x) = QF

p∑
k=1

mk
Fδ(x − xk) − QDδ(x − xmin),

which corresponds to choosing constant feed and discharge rates QF and QD in Model 1, the
solution finally turns out to be

u(x, t) = uH(x, t) + 1

g(x)

[
QF

p∑
k=1

mk
Fχ[x,ξ(x,t)](xk) − QDχ[x,ξ(x,t)](xmin)

]
, (2.3)

where

χ[a,b](x) :=
{

1 if x ∈ [a, b],
0 otherwise

denotes the characteristic function of an interval [a, b]. Note that (2.3) defines a function that
is in general discontinuous across the straight lines x = x1, . . . , xp, xmin and the curves t �→
(ξ(xk, t), t), k = 1, . . . , p and t �→ (ξ(xmin, t), t). Consequently, (2.3) does not satisfy (1.4)
in a pointwise sense; rather, this function is a weak solution. The appropriate mathematical
concept of weak solutions in detailed in Appendix A.

Model 1 has successfully solved some engineering problems [13, 14], but it has a shortcom-
ing that becomes apparent in (2.3). Namely, the discharge rate of balls at a given point of time
does not involve the solution u. To illustrate the consequence of this property, assume that we
start from an empty ball mill u0 ≡ 0 and feed no new balls into it (QF = 0), but let QD > 0,
i.e., one attempts to extract balls at a given rate. A sound mathematical model should then
predict a zero discharge flux of balls, and that the ball mill remains empty, i.e., n(xa, xb, t) = 0
for all 0 ≤ xa < xb ≤ X. However, (2.3) implies u(x, t) = −QDχ[x,ξ(x,t)](xmin)/g(x) and in
particular n(xa, xb, t) < 0 if (xa, xb) ∩ (ξ(x, t), x) 	= ∅. Negative densities and numbers are,
however, undesirable and call for improvement of Model 1.
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2.2. MODEL 2

Model 1 can be improved if we model the discharge mechanism in a different way. Instead
of assuming that there is a prescribed discharge rate of balls of a determined size, which
seems quite unrealistic and difficult to implement, we consider that balls of size x ≤ xs fall
automatically at all times through the discharge sieve of meshwidth xs. (For realizations of
such discharge openings in real grinding mills we refer to [11, pp. 20–31 ff.].) This selection
effect can be considered if we skip the discharge term from (3.1) and rewrite the equation in
integral form. Then we have, first without sieve and considering xa, xb 	= x1, . . . , xp ,

n(xa, xb, t + 	t) − n(xa, xb, t) = −
∫ t+	t

t

(g(xb)u(xb, τ ) − g(xa)u(xa, τ ))dτ

+
p∑

k=1,xa<xk<xb

mk
F

∫ t+	t

t

QF(τ )dτ.
(2.4)

The sieve is not present if xa > xs . Moreover, we assume that the action of the sieve is also
associated with a time-dependent control function QS(t). The total amount of balls of size
between xa and xb that are sieved out in the time interval [t, t + 	t] is given by

nS(xa, xb, t, t + 	t) =
∫ t+	t

t

∫ xb

xa

QS(τ )χ[0,xs](ξ)u(ξ, τ )dξ dτ.

This quantity has to be subtracted from the right-hand side of (2.4) to appropriately model the
sieve action. Thus, the alternative discharge term is

qD(x, t, u) = mk
Fδ(x − xk)QS(t)χ[0,xs](x)u(x, t). (2.5)

Observe that Equation (1.2) in conjunction with (2.5) is still linear, but slightly more involved
than the equation for Model 1 since the sink term now depends on the solution u. For easy
reference, we rewrite the governing equation for Model 2 as

∂u

∂t
+ ∂

∂x

(
g(x)u(x, t) − QF(t)

p∑
k=1

mk
FH(x − xk)

)
= −QS(t)χ[0,xs](x)u(x, t). (2.6)

We will limit the further analysis to that case. We should expect that unlike Model 1, Model 2
produces nonnegative solutions only. This will be established in Section 6 by the analysis of a
difference scheme.

2.3. EXACT SOLUTION OF MODEL 2

To simplify the analysis, we assume that the coefficients are time-independent, and we sim-
plify the notation for the sieve term by setting

b(x) := −QSχ[0,xs](x). (2.7)

Using the method of characteristics for the resulting homogeneous problem

∂u

∂t
+ ∂

∂x
(g(x)u) − b(x)u = 0, u(x, 0) = u0(x),
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we obtain the homogeneous solution

uH(x, t) = g(ξ)

g(x)
u0(ξ) exp

(∫ x

ξ

b(s)

g(s)
ds

)
,

where ξ(x, t) is given by (2.2) if g(x) is defined by (1.1).
For the inhomogeneous problem with a time-independent right-hand side R(x), i.e.,

∂u

∂t
+ ∂

∂x
(g(x)u) − b(x)u = R(x), u(x, 0) = u0(x),

we apply Duhamel’s principle as we did for Model 1, this time obtaining

u(x, t) = uH(x, t) +
∫ t

0
w(x, t, τ )dτ, (2.8)

where

w(x, t, τ ) := g(ξ̂)

g(x)
R(ξ̂) exp

(∫ x

ξ̂

b(s)

g(s)
ds

)
, ξ̂ := ξ(x, t − τ).

With the change of variables ρ = ξ̂ = ξ(x, t − τ), dτ = dρ/g(ρ), the solution then reduces
to

u(x, t) = uH(x, t) − 1

g(x)

∫ ξ(x,t)

x

R(ρ) exp

(∫ x

ρ

b(s)

g(s)
ds

)
dρ. (2.9)

For Model 2 with constant feed rates, the right-hand side R consists of a sum of source terms:

R(x) = QF

p∑
k=1

mk
Fδ(x − xk).

The presence of the δ functions allows us to simplify the exact solution, since∫ ξ(x,t)

x

R(ρ) exp

(∫ x

ρ

b(s)

g(s)
ds

)
dρ =

∫ ξ(x,t)

x

QF

p∑
k=1

mk
Fδ(ρ − xk) exp

(∫ x

ρ

b(s)

g(s)
ds

)
dρ

= QF

p∑
k=1

mk
Fχ[x,ξ(x,t)](xk) exp

(∫ x

xk

b(s)

g(s)
ds

)
.

Substituting this expression in (2.9), we obtain

u(x, t) = uH(x, t) − QF

g(x)

p∑
k=1

mk
Fχ[x,ξ(x,t)](xk) exp

(∫ x

xk

b(s)

g(s)
ds

)
. (2.10)

Using (2.7), we may work out explicit formulas for the integrals of the form

I(z1, z2) :=
∫ z2

z1

b(s)

g(s)
ds
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Figure 1. Exact solution of Model 2 with β = 0.

that appear in both the homogeneous and inhomogeneous portions of the solution. Specifically
for the wear law (1.1), we get

I(z1, z2) = −QSx
β

0

α




log(min{xs, z2}) − log(min{xs, z1}) for β = 1,

1

1 − β

(
(min{xs, z2})1−β − (min{xs, z1})1−β

)
for β 	= 1.

It is evident from this formula that I(z1, z2) = 0 if both z1 ≥ xs and z2 ≥ xs, indicating that
the sieve has no effect on the solution for x > xs. For easy reference, we collect in one place
the exact solution for the equation to be simulated numerically:

u(x, t) = uH(x, t) − QF

g(x)

p∑
k=1

mk
Fχ[x,ξ(x,t)](xk) exp

(
I(xk, x)

)
, (2.11)

where

uH(x, t) = g(ξ)

g(x)
u0(ξ) exp(I(ξ, x)), ξ(x, t) =




x exp(−αt/x0) for β = 1,[
x1−β − α

x
β

0

(1 − β)t

] 1
1−β

for β < 1.

Like the solution constructed in Section 2.1, the solution defined by (2.11) is discontinuous,
and must be understood as a weak solution, as defined in Appendix A.

We illustrate the solution by considering an initially empty ball mill, u0 ≡ 0, for which
uH ≡ 0, and are particularly interested in the behaviour of the solution for x → 0. It is
straightforward to derive the bounded solution in tensor-product form

u(x, t) = − exp

(
QS

α
(xs − x)

) p∑
k=1

mk
FH(−αt − xk) (2.12)

for β = 0 and x < xs. This means that u(0, t) is just a scaled version of the cumulative size
distribution of the feed balls, and in particular a piecewise constant function bounded by one.

In the examples plotted here, we chose the parameters α = −1, x0 = 1, QF = 1, xs = 1,
p = 4, and xk = 1 + 2k and mF(x

k) = 0·25 for k = 1, . . . , 4. These values are chosen
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Figure 2. Exact solution of Model 2 with β = 0·5, which becomes unbounded for x ↓ 0 and is plotted for
x ∈ [0·04, 10] (left) and x ∈ [0·04, 1·25] (right).

since they are algebraically simple, but we may easily relate them to real-world parameters as
follows. Given that real balls typically are up to four inches in diameter, we may, for example,
assume that x is measured in centimeters. If we measure t in tens of days, which is a reasonable
time unit in view of the time scale considered in [13, 14], then our value of α corresponds to

α = −1·0 cm

240 h
= −0·04167 mm/h,

which is a realistic value according to Section 1. Finally, we point out that the number scales
of u, u0, QF and QS must, of course, be the same, but the scale itself can be chosen arbit-
rarily. For example, if we measure u in thousands of balls per centimeter of size range, then
QF = 1 means that we feed 1000 balls per time unit into the ball mill; with the relative
number frequencies chosen here and assuming again the sample time scale of ten days, our
feed operation consists in continuously feeding 25 balls per day of each of the sizes 3, 5, 7
and 9 cm into the mill. Analogously, choosing, for example, QS = 1 means that at the same
time we continuously remove 100 balls per day that have been ground to size x = xs = 1 cm
or smaller.

Figure 1 shows the solution for this case (β = 0) with QS = 1.
Next, we consider the range 0 < β < 1, for which

lim
x↓0

I(xk, x) = −QSx
β

0 x
1−β
s

α(1 − β)
,

which is a well-defined negative constant, and consequently,

exp(I(xk, x))

g(x)
= exp(I(xk, x))

xβ
→ −∞ as x ↓ 0. (2.13)

Moreover,

ξ(0, t) =
(

− α

x
β

0

(1 − β)t

) 1
1−β

for 0 < β < 1. (2.14)
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Figure 3. Exact solution of Model 2 with β = 1 and α > −QSx0.

Figure 4. Exact solution of Model 2 with β = 1 and α = −QSx0.

We obtain u(0, t) = 0 as long as all summands in (2.10) vanish, that is, as long as ξ(0, t) < x1.
From (2.14) we deduce that this holds for

t < t∗ := − x
β

0

α(1 − β)
(x1)

1
1−β ;

for β = 0·5 and the remaining parameters as given above, we get t∗ = 2
√

3 = 3·464. For
t > t∗, (2.13) implies u(x, t) → ∞ as x ↓ 0. Figure 2 shows the solution for this case.

For β = 1 and x < xs, we have

exp(I(xk, x)) = exp

(
−QSx0

α
log(x/xs)

)
= (x/xs)

− QSx0
α

and therefore

u(x, t) = −QFx0

α
x

QSx0
α

s x1− QSx0
α

p∑
k=1

mk
Fχ[x, x exp(−αt/x0)](xk). (2.15)

For α > −QSx0, we obtain a continuous function of x that vanishes at x = 0 and multiplies
a finite sum. In this case we have u(0, t) = 0.
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Figure 5. Exact solution of Model 2 with β = 1 and α < −QSx0.

For α = −QSx0, we get for x < xs

u(x, t) = QFx0

QSxs

p∑
k=1

mk
Fχ[x,x exp(QSt )](xk). (2.16)

For x = 0, all the summands in (2.16) are zero, and therefore u(0, t) = 0. However, it is
instructive to note that for any fixed value x∗ ∈ (0, xs), we have

lim
t→∞ u(x∗, t) = QFx0

QSxs
,

since x1, . . . , xp ∈ [x∗, x∗ exp(QSt)] for t sufficiently large, and thus the value of the sum is
m1

F + · · · + m
p

F = 1.
For α < −QSx0, the solution at x = 0 is not defined. The solution becomes unbounded

for x > 0 sufficiently small and t sufficiently large. To see this, fix x∗ ∈ (0, xs); we then have

u(x, t) > −QFx0

α
x

QSx0
α

s x
−1− QSx0

α∗ for x ∈ (0, x∗) and t > −x0

α
log(xp/x∗).

The solutions for β = 0·5 and the three cases of α are plotted in Figures 3, 4, and 5,
respectively, and correspond to QS = 2, 1 and 0·5, and the other parameters as chosen before.
We mention that the singular behaviour of the number density function is also well known
from population balance models in other applications. See, for example, [8, Section 2.11].

3. Finite-difference schemes

From here on, our analysis, the development of numerical schemes, and comparisons between
exact and numerical solutions are limited to Model 2.

Equation (2.6) can be written as

∂u

∂t
+ ∂

∂x
(g(x)u + γ (t)a(x)) = b(x, t)u, (x, t) ∈ �T , (3.1)

where �T is defined in (1.5), γ (t) := −QF(t), and

a(x) :=
p∑

k=1

mk
FH(x − xk), b(x, t) := −QS(t)χ0,xs(x). (3.2)
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We consider (3.1) together with the initial condition

u(x, 0) = u0(x), x ∈ (0, X), (3.3)

and the boundary condition at the right boundary

u(X, t) = 0, t ∈ (0, T ]. (3.4)

No boundary condition is required at x = 0. Our assumptions on the data are the following:

g is absolutely continuous on [0, X], g(x) ≤ 0 on [0, X], g(x) < 0 on (0, X], (3.5)

a(x) ≥ 0, a ∈ L∞((0, X]), a is nondecreasing on (0, X), (3.6)

a(x) is constant on some interval [X − δa,X]for some δa ∈ (0, X], (3.7)

b(x, t) ≤ 0, and b ∈ L∞(�T ), (3.8)

γ (t) ≤ 0, γ ∈ BV ([0, T ]), (3.9)

u0(x) ≥ 0, u0 ∈ BV ([0, X]). (3.10)

To aid readability, we define A := ||a||L∞ , B := ||b||L∞ , 
 := ||γ ||L∞ , and G := ||g||L∞ .

REMARK 3.1. Concerning condition (3.5), when devising and analysing numerical schemes,
we are allowing g(x) to be of slightly more general form than the class of wear rates given by
(1.1). Also, we note for future reference that condition (3.5) implies that g ∈ BV ([0, X]).

We now turn to the description of our numerical algorithms. In Section 3.1, we construct
a first-order upwind scheme. In Section 3.2 we modify this first-order scheme to achieve im-
proved accuracy. We propose a new design approach, the so-called flux-TVD principle, which
we use to derive a regularizing process that damps out spurious oscillations caused by the
second order correction terms. The analysis of our first-order scheme appears in Appendix B,
and we defer the analysis of our new second-order scheme to a future paper.

3.1. FIRST-ORDER SCHEME

Associated with an integer J 	 > 0, define the spatial mesh size 	x = X/J 	, where ‘spatial’
refers to the internal particle size coordinate. We fix the parameter λ and define the temporal
mesh size 	t = λ	x, always assuming that the following CFL condition is satisfied:

λG + 	tB ≤ 1. (3.11)

Let N	 := �T /	t� + 1, so that T ≤ N		t < T + 	t . The symbol 	 refers to the
discretization defined by (	x,	t) = (	x, λ	x). The spatial domain IR is discretized into
cells Ij := [xj , xj+1), where xj := j	x for j = 0, . . . J 	. Similarly, the time interval [0, T ]
is discretized via tn := n	t for n = 0, . . . , N , resulting in the time strips I n := [tn, tn+1). We
let χj(x) and χn(t) be the characteristic functions for the intervals Ij and I n, respectively. We
let χn

j (x, t) := χj (x)χn(t) be the characteristic function for the rectangle Rn
j := Ij × I n. To

simplify the presentation, we use 	+ and 	− to designate the difference operators in the x

direction, e.g., 	+hn
j = hn

j+1 = 	−hn
j+1. Our first-order scheme is then

Un+1
j =

{
Un

j − λ	+(gjU
n
j + γ naj ) + 	tbn

j U
n
j for j 	= J 	,

Un
j + λgjU

n
j + 	tbn

j U
n
j for j = J 	.

(3.12)
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For the sake of simplicity, we will always use the first formula, which is possible with the
understanding that Un

J	,Un
J	+1 ≡ 0 (which enforces the boundary condition (3.4)), and

aJ	+1 ≡ aJ	 . In view of the hypothesis (3.7), this last condition will hold as soon as the
mesh size is sufficiently small. Here, we let gj := g(xj ), aj := a(xj ), γ n := γ (tn) and
bn

j := b(xj , t
n). Note that the scheme (3.12) is one-sided, in particular that it is biased to the

right, the direction of incoming information, i.e., the scheme is upwind in particle size and
explicit time stepping is used. Recall that we are assuming g(x) ≤ 0, so that characteristics
flow from right to left.

3.2. SECOND-ORDER SCHEME

Ignoring for the moment the contribution of the sieve term and the source terms, we see
that the scheme proposed in the previous section is a first-order upwind scheme for a scalar
conservation law. By the end of the 1980’s many methods of modifying such first-order
schemes to achieve higher order accuracy had been proposed [26–28]. The challenge faced
by the designers of such schemes is that any naive attempt to improve accuracy will introduce
oscillations in regions of rapid transition. For this reason, virtually all of the successful higher-
order schemes employ some limiting process that reduces the contribution of the higher-order
correction terms wherever a rapid transition is detected. Usually the limiter is designed in such
a way that some regularity property of the actual solution to the conservation law is achieved.
This is often sufficient to avoid spurious oscillations, and is not inconsistent with higher-order
accuracy in regions where the solution is smooth. A number of such schemes have been based
on the Total Variation Diminishing (TVD) regularity property of scalar conservation laws. For
many scalar conservation laws, the TVD approach achieves a significant increase in accuracy
with only moderate additional complexity, and so it is a good candidate for our problem.

Unfortunately, when the flux has discontinuities, as is the case here, it is not reasonable
to require the numerical approximations to be TVD, since the solution to the original con-
servation law will not generally have this property. Instead, we propose the novel approach
of requiring that the numerical flux be TVD, because this is a property that the flux for the
original conservation law does have. This so-called flux-TVD principle is also motivated by
our convergence proof (for the first-order scheme) in Appendix B, where the key steps in our
compactness proof are bounds on the magnitude and the spatial total variation of the numerical
flux. We find that enforcing this flux-TVD property damps out spurious oscillations, but still
allows the scheme to have much better accuracy than the first-order version. The same idea
also applies to nonlinear conservation laws with discontinous coefficients, which will be the
topic of future work.

Let us concentrate on the following equation:

∂u

∂t
+ ∂

∂x
(g(x)u + a(x)) = b(x)u, (3.13)

i.e., we ignore all time-dependence of the coefficients for now. The first-order scheme is then

Un+1
j = Un

j − λ	+(gjU
n
j + aj ) + 	tbj U

n
j = Un

j − λ	+hn
j + 	tbjU

n
j .

For the purpose of a truncation error analysis, we write the scheme as

Un+1
j − Un

j

	t
+ 	+hn

j

	x
− bjU

n
j = 0,
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and insert a smooth solution, arriving, after a Taylor series expansion, at

Un+1
j − Un

j

	t
+ 	+hn

j

	x
− bjU

n
j = 1

	t

(
λ

2
	x2 ∂

∂x

[
(1 + λg)

∂

∂x
(gu + a)

]

−λ

2
	t	x

∂

∂x
(gbu)

−1

2
	t · b

[
λ	x

∂

∂x
(gu + a) − 	tbu

])
+O(	x2). (3.14)

In deriving this formula for the truncation error, we have used (3.13) to replace ut , and, to
replace the term ∂2u/∂t2, the relationship

∂2u

∂t2
= ∂

∂x

(
g

[
∂

∂x
(gu + a) − bu

])
− b

[
∂

∂x
(gu + a) − bu

]
.

For the moment, let us ignore the sieve portion of the model, leaving us with the conservation
law

∂u

∂t
+ ∂

∂x
(g(x)u + a(x)) = 0. (3.15)

By closely examining the analysis in the previous section, one can see that the first-order
scheme for this PDE,

Un+1
j = Un

j − λ	+hn
j , (3.16)

has the property that the numerical flux hn
j is TVD:

j	∑
j=1

∣∣∣	−hn+1
j

∣∣∣ ≤
j	∑
j=1

∣∣	−hn
j

∣∣ , (3.17)

the property that we referred to above as flux-TVD. The scheme (3.16) approximates the
conservation law (3.15) to first-order, and the truncation error equals the first term on the
right-hand side of (3.14), i.e.,

1

	t

λ

2
	x2 ∂

∂x

(
(1 + λg)

∂

∂x
(gu + a)

)
. (3.18)

To construct a second-order scheme for (3.15), we will add flux corrections to (3.16), gen-
erating a Lax-Wendroff type scheme of the type described in [29], and then apply bounding
functions, referred to in the conservation law literature as limiters, to enforce the flux-TVD
property. The second-order version of (3.16) will take the form

Un+1
j = Un

j − λ	+(hn
j + ên

j−1/2), (3.19)

where ên
j−1/2 is a regularized version of the second-order correction en

j−1/2. Here the ˆ notation
indicates that some limiter has been applied. A straightforward calculation reveals that for
our simplified scheme (3.19) with the correction terms present, the first-order flux evolves
according to

hn+1
j = hn

j − λgj

(
1 + 	+ên

j−1/2

	+hn
j

)
	+hn

j .
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From this equation it is clear that the flux-TVD property (3.17) as well as a maximum principle
for the numerical flux hold if

0 ≤ −λgj

(
1 + 	+ên

j−1/2

	+hn
j

)
≤ 1. (3.20)

Guided by the truncation error term (3.18), we let

en
j+1/2 = −1

2
(1 + λgj )	+hn

j .

If we impose the CFL condition (recall that gj ≤ 0, and that we are ignoring the sieve term
for now) −λgj ≤ 1, then the condition (3.20) will be satisfied if we apply the limiter

ên
j−1/2 = minmod{en

j+1/2, e
n
j−1/2}, j = 1, . . . , J δ − 1. (3.21)

It is clear that, wherever the solution is smooth, application of the limiter in (3.21) will not
destroy the formal second-order accuracy. One detail that needs some attention here is that
(3.21) is not well-defined for j = 0. In the numerical examples we have set ê−1/2 = ê1/2.

For the sieve portion of the scheme the formula for the truncation error (3.14) suggests that
the correction term should be

−λ

2
	t	+(gjbjU

n
j ) − 1

2
	tbj (λ	+hn

j − 	tbjU
n
j ).

With the sieve corrections included, the second order scheme is then

Un+1
j = Un

j − λ	+(hn
j + ên

j−1/2)

+ 	tbjU
n
j − λ

2
	t	+(gjbjU

n
j ) − 1

2
	tbj (λδ+hn

j − 	tbj U
n
j ). (3.22)

Our numerical experiments (see Section 4) indicate that this second order version is well-
behaved, i.e., it suffices to apply limiters to the flux corrections, and no additional regulariza-
tion processing is required for the second-order corrections applied to the sieve term. Although
we have not done so here, the flux-TVD approach for constructing second-order schemes
described above can be put on a rigorous theoretical footing, even for nonlinear conservation
laws with discontinuous coefficients. We defer that analysis to a later paper.

4. Numerical simulations

To test the two numerical schemes, we select three of the five cases for which an exact solution
is presented in Section 2.3, and utilize the same parameters. Specifically, we restrict ourselves
to α = −QSx0 and consider the solutions plotted in Figures 1, 2 and 4, corresponding to
β = 0, β = 0·5, and β = 1, respectively. Consequently, the test cases differ in the value of β

only. Figures 6–14 show the numerical results for these three cases, corresponding to solution
profiles at times t = 1, t = 5 and t = 10 in each case. The numerical solutions have been
produced by using λ = 0·1 and the discretizations 	x = X/J 	 with X = 10 and J 	 = 100
for the left and J 	 = 200 for the right diagram in each of these figures. The runs with the low-
accuracy first-order and the high-accuracy second-order scheme are denoted by L100, L200
and H100, H200, respectively. To record an error history and to measure convergence rates,
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Figure 6. Numerical simulation of a ball mill with β = 0 at t = 1. Here and in Figures 7–14, numerical solutions
are depicted by symbols and the exact solution by a solid line, and ‘L’ and ‘H’ refer to the low and high-order
schemes used with the indicated value of J	, respectively.

Figure 7. Numerical simulation of a ball mill with β = 0 at t = 5.

we have performed additional simulations with one coarser and several finer discretizations
and measured the L1 errors and convergence rates listed in Tables 1–3.

Figure 6 shows that stationary discontinuities due to the jumps in a(x) are sharply resolved,
while the traveling discontinuities located around x = 2, 4, 6 and 8 are smeared out, which is a
well-known property of standard monotone schemes for conservation laws. As expected, dis-
continuities are more sharply resolved by the second-order scheme. This also becomes visible
in Figure 7. Moreover, the leftmost numerical solution points (corresponding to x = 0) attain
high values that increase with J 	; for example, at t = 1 we have un

0 > 1 for the H200 scheme.
These singular solution values are not plotted in this and subsequent figures. Figure 8 shows
that the steady-state solution is approximated well by both families of schemes. However, a
thin numerical boundary layer produced by high solution values at x = 0 persists.

A new feature that can bee seen in Figure 9 is a very narrow gap near x = 3, which closes
a short time later on. The numerical solution exhibits a jump of nearly the same strength
(near x = 3), but which is shifted upwards. Furthermore, we see for example that information
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Figure 8. Numerical simulation of a ball mill with β = 0 at t = 10.

Figure 9. Numerical simulation of a ball mill with β = 0·5 at t = 1.

traveling downstream from x1 = 9 has already surpassed the next smaller discontinuity of
a(x) at x2 = 7, so that the discontinuity of the numerical solution around x3 = 7 (and,
similarly, around x = x2 = 5) is sharp, but the adjacent numerical values are too small. This
spurious effect decreases with increasing accuracy, however. Figure 10 displays a situation in
which the exact solution for has attained steady state for x > xs = 1 (see also Figure 4).
Figure 9 illustrates that the second-order scheme is significantly more accurate on the interval
(0, 1] than the first-order version. This tendency is also reflected by the lower L1 errors for the
second-order scheme listed in the middle column of Table 2. The superiority of the second-
order scheme is also visible in the very similar Figure 11.

Unlike what we have seen in the previous two cases, the choice β = 1 does not lead to
numerical solutions that become unbounded near x = 0. Figure 12 displays an exact solution
profile with a number of sawtooth-shaped extrema. As expected, these ‘peaks’ are poorly
approximated by the first-order scheme. The discontinuity at x4 = 3 is sharply resolved,
however. Figures 13 and 14 differ only in the solution near x = 0. The superiority of the
second-order scheme becomes apparent in the error history recorded in Table 3, and is also
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Figure 10. Numerical simulation of a ball mill with β = 0·5 at t = 5.

Figure 11. Numerical simulation of a ball mill with β = 0·5 at t = 10.

visible in these two figures in that the exact maximal solution value one is better approximated
by the second-order scheme than by the first-order scheme with the same value of J	.

Appendix A. Weak solutions and uniqueness

With g(x) allowed to vanish at the origin, solutions of Model 2 are not necessarily bounded
near x = 0. Physically, this corresponds to an accumulation of balls that have been ground
down to a size close to zero. To accommodate this lack of a bound, it is natural to work with
the weighted L1 norm

||w||L1
g([0,X]) :=

∫ X

0
|w(x)||g(x)|dx.
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Figure 12. Numerical simulation of a ball mill with β = 1 at t = 1.

Figure 13. Numerical simulation of a ball mill with β = 1 at t = 5.

Figure 14. Numerical simulation of a ball mill with β = 1 at t = 10.
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Table 1. L1 errors for β = 0.

J = 10
	x t = 1 t = 5 t = 10

conv. conv. conv.

L1 error rate L1 error rate L1 error rate

Scheme 1

50 0·58122 0·57302 0·37836

100 0·35585 0·708 0·40295 0·508 0·18758 1·012

200 0·22515 0·660 0·27644 0·544 0·09223 1·024

400 0·14677 0·617 0·18353 0·591 0·04567 1·014

800 0·09787 0·585 0·12209 0·588 0·02305 0·986

1600 0·06636 0·561 0·08256 0·564 0·01212 0·927

2000 0·05873 0·548 0·07305 0·549 0·01004 0·841

Scheme 2

50 0·48088 0·48776 0·32963

100 0·26259 0·873 0·27157 0·845 0·16402 1·007

200 0·14687 0·838 0·15238 0·834 0·08188 1·002

400 0·08400 0·806 0·08691 0·810 0·04101 0·997

800 0·04898 0·778 0·05039 0·786 0·02072 0·984

1600 0·02904 0·754 0·02970 0·763 0·01082 0·937

2000 0·02462 0·741 0·02515 0·745 0·00893 0·860

We use the notation L1
g([0, X]) for the Banach space of measurable functions on [0, X] for

which this norm is finite. Solutions of Model 2 are also not generally continuous and thus
need to be defined as weak solutions. For this purpose we introduce the space of test functions

D :=
{
ψ ∈ C(�T )

∣∣∣∣ψ(0, t) = 0, ψ(x, T ) = 0,
∂ψ

∂x
∈ L1(�T ),

∂ψ

∂t
∈ L∞(�T )

}
.

DEFINITION A.1 (weak solution). A function u ∈ C([0, T ], L1
g(0, X) is called a weak

solution of the initial-boundary value problem defining Model 2, (3.1), (3.3) and (3.4), if

g(x)u + γ (t)a(x) ∈ L∞(�T ) (A.1)

and the following weak formulation of the problem is satisfied, for all test functions φ ∈ D :∫ T

0

∫ X

0

{
u
∂φ

∂t
+ (g(x)u + γ (t)a(x))

∂φ

∂t
+ b(x, t)uφ

}
dxdt

−
∫ T

0
γ (t)a(X)φ(X, t)dt +

∫ X

0
u0(x)φ(x, 0)dx = 0.

(A.2)

The closed-form solutions to Model 2 that we derived in Section 2.3 are weak solutions in
the sense of Definition A.1. In Appendix B, we will show that the limits of a certain difference
scheme are also weak solutions. We would like some assurance that the closed-form solutions
and the limit of numerical solutions are identical, which leads us to consider the question of
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Table 2. L1 errors for β = 0·5.

J = 10
	x t = 1 t = 5 t = 10

conv. conv. conv.

L1 error rate L1 error rate L1 error rate

Scheme 1

50 0·23582 0·32149 0·27982

100 0·17632 0·420 0·16958 0·923 0·14501 0·948

200 0·12419 0·506 0·09368 0·856 0·07457 0·960

400 0·08611 0·528 0·05545 0·757 0·03948 0·918

800 0·05965 0·530 0·03570 0·635 0·02154 0·874

1600 0·04148 0·521 0·02373 0·589 0·01212 0·830

2000 0·03667 0·552 0·02123 0·500 0·01013 0·803

Scheme 2

50 0·19033 0·27433 0·25013

100 0·11657 0·707 0·13859 0·985 0·12522 0·998

200 0·07083 0·719 0·07461 0·894 0·06056 1·048

400 0·04254 0·735 0·03945 0·919 0·03206 0·918

800 0·02641 0·688 0·02088 0·918 0·01827 0·811

1600 0·01601 0·722 0·01275 0·712 0·01072 0·769

2000 0·01340 0·796 0·01107 0·635 0·00909 0·743

uniqueness. For the sake of simplicity, we restrict the analysis to the case where the sieve term
b is independent of time, b = b(x).

THEOREM A.1 (Uniqueness). Assume that the sieve term is independent of time, i.e., b =
b(x), and that 1/g ∈ L1([0, X]). If u and v are two weak solutions having the same initial
data u0(x), then u(x, t) = v(x, t) a.e. �T .

REMARK A.1. With the assumption 1/g ∈ L1([0, X]), we are including all of the wear
models of the type (1.1) with 0 ≤ β < 1.

Proof. Let u and v be a pair of weak solutions having the same initial data. Let w := v − u

denote their difference, and observe that due to the linearity of the problem, w satisfies

∫ T

0

∫ X

0
w

(
∂ψ

∂t
+ g(x)

∂ψ

∂x
+ b(x)ψ

)
dxdt = 0 (A.3)

for all test functions ψ ∈ D . If we can show that the backward initial-boundary-value problem

∂ψ

∂t
+ g(x)

∂ψ

∂x
+ b(x)ψ = φ(x, t) for a.e. (x, t) ∈ �T , ψ(0, t) = 0,

ψ(x, T ) = 0

(A.4)
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Table 3. L1 errors for β = 1.

J = 10
	x t = 1 t = 5 t = 10

conv. conv. conv.

L1 error rate L1 error rate L1 error rate

Scheme 1

50 0·14028 0·25857 0·25416

100 0·11202 0·324 0·15020 0·784 0·14217 0·838

200 0·08488 0·400 0·08648 0·796 0·07533 0·916

400 0·06113 0·474 0·04720 0·873 0·03880 0·957

800 0·04359 0·488 0·02655 0·830 0·01972 0·977

1600 0·03011 0·533 0·01436 0·887 0·00998 0·983

2000 0·02721 0·453 0·01250 0·620 0·00803 1·977

Scheme 2

50 0·13033 0·22822 0·22465

100 0·08417 0·631 0·12984 0·814 0·12260 0·874

200 0·05066 0·732 0·07550 0·782 0·06424 0·932

400 0·03105 0·707 0·03961 0·931 0·03292 0·965

800 0·01928 0·688 0·01985 0·996 0·01667 0·982

1600 0·01133 0·767 0·01025 0·953 0·00842 0·985

2000 0·00999 0·564 0·00874 0·713 0·00677 0·973

has a solution ψ ∈ D for all C∞ functions φ having support in �T , then by substituting ψ in
(A.3), we will have∫ T

0

∫ X

0
wφdxdt = 0,

implying that w = 0 a.e. in �T ,
In fact, an explicit solution to (A.4) is given by

ψ(x, t) =
∫ T −t

0
z(x, t, τ )dr, (A.5)

where

z(x, t, τ ) := −φ(ŷ, T − τ) exp

(∫ ŷ

x

b(s)

g(s)
ds

)
, ŷ := y(x, T − t − τ). (A.6)

Here, y ∈ C(�T ) ∩ C1(�T ) is a classical solution to the initial-boundary-value problem

∂y

∂t
− g(x)

∂y

∂x
= 0, y(x, 0) = x, y(0, t) = 0. (A.7)

If we let

P(x) := −
∫ x

0

dw

g(w)
, �(t) := P −1(t),
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then a specific formula for y is given by

y(x, t) =
{

�(P (x) − t) for t < P (x),

0 for t ≥ P(x).
(A.8)

We will also need the partial derivates of y(x,t); for convenience, we denote partial derivates
in the remainder of this proof by yt , yx , and so on. We get

yt (x, t) =
{

g(�(P (x) − t)) for t < P (x),

0 for t ≥ P(x)
(A.9)

and

yx(x, t) =
{

g(�(P (x) − t))/g(x) for t < P (x),

0 for t ≥ P(x),
(A.10)

where we have used

P ′(x) = −1/g(x), �′(ζ ) = 1/P ′(�(t)) = −g(�(t)).

Before continuing, let us also record the formulas for ψx and ψt :

ψx =
∫ T −t

0
zx(x, t, τ )dτ, ψt =

∫ T −t

0
zt (x, t, τ )dτ − z(x, t, T − t), (A.11)

where, with the notation ŷ: = yx(x, T − t − τ), ŷt := yt(x, T − t − τ),

zx(x, t, τ ) = −φx(ŷ, T − t)ŷx exp

(∫ ŷ

x

b(s)

g(s)ds

)
+ z(x, t, τ )

[
b(ŷ)

g(ŷ)
ŷx − b(x)

g(x)

]
, (A.12)

and

zt (x, t, τ ) = −φx(ŷ, T − t)ŷt exp

(∫ ŷ

x

b(s)

g(s)ds

)
+ z(x, t, τ )

[
b(ŷ)

g(ŷ)
ŷt

]
. (A.13)

It is clear that y ∈ C(�T ). Note that because of our assumptions about g(x), both P(x)

and �(t) are strictly increasing and vanish when their arguments are zero. In particular, for
each t ∈ (0, T ), the set Z(t) := {x|0 < x < �(t)} is a nonempty open interval, and all of
y, yx , yt vanish identically for x ∈ Z(t). With this in mind, it is not hard to see that all of
y, yx , yt are continuous and bounded on �T . Similarly, for 0 < t < T , 0 < τ < T − t ,
ŷ(x, t), ŷx(x, t), ŷt (x, t) all vanish identically for x ∈ Z(T − t − τ), and thus all of ŷ, ŷx ,
ŷt are bounded on �T . Since supp(φ) ⊆ �T , this in turn implies that z(x, t, τ ), zx(x, t, τ ),
zt (x, t, τ ) also vanish for x ∈ Z(T − t − τ). Using the formulas (A.5), (A.6), along with the
observations above, we may easily check that ψ(0, t) = ψ(x, T ) = 0, and ψ ∈ C(�T ).

To show that ψ ∈ D , it remains to verify that ψx ∈ L1(�T ), ψt ∈ L∞(�T ). In view
of formula (A.13), showing that ψt ∈ L∞(�T ) boils down to recalling that ŷx and ŷt are
bounded, and verifying that we have control of the second term of (A.13). Since zt vanishes
on Z(T − t − τ), we are only concerned with x ∈/ Z(T − t − τ). Both z and b are bounded,
and for x ∈/ Z(T − t − τ), (A.8), (A.9) reveal that ŷt /g(ŷ) = 1.

To show that ψx ∈ L1(�T ) we proceed in a similar manner. This time we find that there is
a factor of 1/g(x) multiplying a bounded quantity, giving us an L1 bound (since 1/g ∈ L1),
but not an L∞ bound. �
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REMARK A.2. In the proof above we have used the duality relationship between the conser-
vation law

∂u

∂t
+ ∂

∂x
(g(x)u) = b(x)u

and the transport equation (A.4). With this approach, one proves uniqueness for the (forward
in time) original problem by proving existence for the (backward in time) dual problem. Note
that we are not claiming uniqueness for solutions of the dual problem (A.4). Indeed reference
[24], where this duality relationship is explained more completely, points out that in general,
when uniqueness holds for the forward original problem, uniqueness fails for the backward
dual problem.

Appendix B. Convergence proof for the first-order difference scheme

In this section we verify that our first-order scheme (3.12) produces approximations to the
initial boundary problem (3.1), (3.3), (3.4) that converge (along a subsequence) to a weak
solution in the sense of Definition A.1. There are two factors that complicate our analysis.
First, solutions are not necessarily bounded, due to the fact that the coefficient vanishes at
x = 0. Second, the source terms create discontinuities in the solution, and more importantly,
lead to increases in the spatial variation of the solution. When analyzing first-order schemes
for simpler conservation laws, it is standard practice to proceed by proving a bound on the
amplitude of the approximate solutions, along with a bound on the spatial variation, and a
time-continuity estimate. By standard results [25], one can then verify convergence of the
approximations along a subsequence as the mesh size tends to zero. Since bounds on the
amplitude and the spatial variation are not possible in the present situation, we will instead
establish these bounds for the numerical flux approximations defined by (B.1) below. These
two bounds, along with a time continuity estimate, allow us to prove that the numerical flux
converges, and then we can recover the actual solution u, since the value of the flux g(x)u +
γ (t)a(x) uniquely determines the value of u for this linear problem.

Denote the numerical flux by

hn
j := gjU

n
j + γ naj , (B.1)

and let

u	(x, t) :=
J	∑
j=0

N	∑
n=0

χn
j (x, t)Un

j , h	(x, t) :=
J	∑
j=0

N	∑
n=0

χn
j (x, t)hn

j .

As mentioned above, we will prove compactness for the sequence h	, and then recover the
solution u by inverting h. We proceed via a sequence of lemmas which lead up to our main
convergence result, Theorem B.1.

LEMMA B.1. If the CFL condition (3.11) is satisfied, then the numerical solution is nonneg-
ative and the numerical flux is nonpositive, i.e.,

Un
j ≥ 0, hn

j ≤ 0 for j = 1, . . . , J 	, n = 1, . . . , N	. (B.2)
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Proof. For the first part of (B.2), assume that Un
j ≥ 0. Then the right-hand side of the

marching formula

Un+1
j = (1 + λgj + 	tbn

j )U
n
j − λgj+1U

n
j+1 − λγ n(aj+1 − aj )

is also nonnegative due to the CFL condition and properties (3.5) and (3.6), respectively. It is
then clear that Un+1

j ≥ 0, and the desired result follows by induction on n. For the second part
of (B.2), we check (B.1) ans use the following facts: Un

j ≥ 0, gj ≤ 0, γ n ≤ 0, aj ≥ 0. �

The following lemma provides the discrete version of the bound (A.1) on the amplitude of
the flux that is satisfied by a weak solution to the initial value problem (3.1), (3.3), (3.4).

LEMMA B.2. The numerical flux hn
j is bounded independently of 	, i.e.,

|hn
j | ≤ C1 for all 0 ≤ j ≤ J 	 and 0 ≤ n ≤ N	. (B.3)

Proof. It is easily checked that the flux evolves according to

hn+1
j = (1 + λgj )h

n
j − λgj+1h

n
j+1 + 	tgjb

n
j U

n
j + aj (γ

n+1 − γ n). (B.4)

From this expression, along with the observation that 	tgjb
n
j U

n
j ≥ 0, we obtain

hn+1
j ≥ (1 + λgj )h

n
j − λgj+1h

n
j+1 + aj (γ

n+1 − γ n) ≥ min{hn
j , h

n
j+1} + aj (γ

n+1 − γ n).

Recalling that hn
j ≤ 0, we now see that

|hn
j | ≤ max

j
|h0

j | + 2A
 ≤ Gu0 + 2A
. �

LEMMA B.3. There is a constant C2 independent of the mesh size 	 such that the following
spatial variation bound for the numerical flux holds:

J	∑
j=1

|	−hn
j | ≤ C2, 0 ≤ n ≤ N	. (B.5)

Proof. Starting from the expression (B.4) for the evolution of the numerical flux, we find
that the flux differences evolve according to

	−hn+1
j = (1 − λgj−1)	+hn

j−1 − λgj	+hn
j + bn

j 	t	−hn
j

+ hj−1	t	−bn
j + (γ n+1 − γ n)	−aj − 	tγ nbn

j 	−aj − 	tγ naj−1	−bn
j .

(B.6)

Taking absolute values and applying the CFL condition (3.11), we get

J	∑
j=1

|	−hn+1
j | ≤ (1 + B	t)

J	∑
j=1

|	−hn
j | + ||h||	t

J	∑
j=1

|	−bn
j |

+ |γ n+1 − γ n||a|BV + 	t
B|a|BV + 	t
A

J	∑
j=1

|	−bn
j |.
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Applying this inequality inductively, we arrive at

J	∑
j=1

|	−hn
j | ≤ (1 + B	t)n


 J	∑

j=1

|	−h0
j | + ||h||	t

n−1∑
ν=1

J	∑
j=1

|	−bν
j |

+
n−1∑
ν=0

|γ ν+1 − γ n||a|BV + n	t
B|a|BV + 	t
A

n−1∑
ν=0

J	∑
j=1

|	−bν
j |




≤ eBT


 J	∑

j=1

|	−h0
j | + ||h|| |b|BV + |γ |BV |a|BV + 
T B|a|BV + 
A|b|BV


.

The proof is completed via the estimate

J	∑
j=1

|	−h0
j | ≤ G|u0|BV + ||u0|| |g|BV + 
|a|BV .

Here |b|BV denotes two-dimensional variation, while |a|BV , |γ |BV and |g|BV denote one-
dimensional variation. �

LEMMA B.4. The L1 norm of the approximate solution is bounded for t ∈ [0, T ], i.e., there
is a constant C3 independent of the mesh size 	 such that

J	∑
j=0

|Un
j |	x ≤ C3, 0 ≤ n ≤ N	. (B.7)

Proof. From the definition of the scheme (3.12),

|Un+1
j | ≤ |Un

j | + λ|	+hn
j | + 	tB|Un

j |.
Multiplying by 	x and summing over j yields

J	∑
j=0

|Un+1
j |	x ≤ (1 + B	t)

J	∑
j=0

|Un
j |	x + λC2	x.

Using this inequality to proceed inductively, and applying λ	x = 	t , we get

J	∑
j=0

|Un
j |	x ≤ eBT

J	∑
j=0

|U 0
j |	x + C2

eBT − 1

B
. �

LEMMA B.5. There is a constant C4 independent of the mesh size 	 such that

J	∑
j=0

|Un+1
j − Un

j |	x ≤ C4	t, 0 ≤ n ≤ N	 − 1. (B.8)
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Proof. From the definition of the scheme, and using λ	x = 	t , we have

J	∑
j=0

|Un+1
j − Un

j |	x ≤ λ

J	∑
j=0

|	 − hn
j |	x + B	t

J	∑
j=0

|Un
j |	x ≤ C2	t + BC3	t. �

THEOREM B.1. The approximations u	 converge along a subsequence a.e. in �T to a weak
solution u of the initial value problem (3.1), (3.3), (3.4). For each fixed t ∈ [0, T ], as 	 → 0
along this subsequence,

u	(·, t) −→ u(·, t) in L1
g([0, X]). (B.9)

Additionally, for each ε ∈ (0, X), u	(·, t) converges to u(·, t) along the same subsequence
in L1([ε,X] × [0, T ]) as 	 → 0. If the sieve term is time-independent, i.e., b = b(x), and
1/g ∈ L1[0, X], then the entire sequence converges to the unique weak solution guaranteed
by Theorem A.1.

Proof. Let S = {t1, t2, . . .} be a countable dense subset of [0, T ]. For the sequence of
functions h	(·, t1) we have an L∞ bound (Lemma B.2), and a bound on the total variation
(Lemma B.3). Also, the L1 bound for u	(·, t1) (Lemma B.4) readily implies an L1 bound for
h	. All of these bounds are independent of the mesh size 	. By standard compactness results,
there is a function hlim(·, t1) ∈ L1([0, X]) ∩ L∞([0, X]) and a subsequence of {h	(·, t1)}	,
which we do not bother to relabel, such that h	(·, t1) → hlim(·, t1) in L1([0, X]) and a.e. in
[0, X]. In view of the identity

u	(x, t1) = h	(x, t1) − γ 	(t)a	(x)

g	(x)
, x ∈ (0, X], (B.10)

we recover the solution u from hlim via

u(x, t1) := hlim(x, t1) − γ (t)a(x)

g(x)
, x ∈ (0, X]. (B.11)

It is clear that the right-hand side of (B.10) converges to the right-hand side of (B.11) a.e. in
[0, X], and thus u	(·, t1) → u(·, t1) a.e. in [0, X]. Next, we claim that∫ X

0
|u	(x, t1) − u(x, t1)||g(x)dx → 0 as 	 → 0. (B.12)

To prove this claim, we use the triangle inequality to derive∫ X

0
|u	(x, t1) − u(x, t1)||g(x)dx ≤

∫ X

0
|g	(x)u	(x, t1) − g(x)u(x, t1)|dx

+
∫ X

0
|u	(x, t1)||g(x) − g	(x)|dx. (B.13)

The first integral on the right-hand side of (B.13) converges to zero; this follows from h	(·, t1)
→ h(·, t1) in L1([0, X]). The second integral can be estimated by∫ X

0
|u	(x, t1)||g(x) − g	(x)|dx ≤ sup

x∈[0,X]
|g(x) − g	(x)|

∫ X

0
|u	(x, t1)|dx. (B.14)
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The term on the right side of (B.14) converges to zero, thanks to our uniform L1 bound on u	

(Lemma B.4), and the fact that g is uniformly continuous on [0, X].
We can repeat this argument with t2 replacing t1, and starting from a subsequence of the

subsequence used to construct u(·, t1), giving us u(·, t2) ∈ L1
g([0, X]) and u	(·, t2) → u(·, t2).

Continuing this way, taking a subsequence of the previous one at each step, and then using the
standard diagonalization process, we get a function u(x, t), which is defined for t ∈ S such
that u(·, t) ∈ L1

g([0, X], and u	(·, t) → u(·, t) in L1
g([0, X]) for t ∈ S.

As a consequence of the time continuity estimate (Lemma B.5), t �→ u(·, t) is a uniformly
continuous mapping of the dense subset S into L1

g([0, X]). Since L1
g([0, X]) is complete, the

mapping can be extended uniquely to a uniformly continuous mapping t �→ u(·, t) whose
domain is the entire interval [0, T ]. A straightforward estimate using the triangle inequality
and uniform continuity in time shows that u	(·, t) → u(·, t) in L1

g([0, X]) for t ∈ [0, T ].
For any ε > 0, both u	(·, t) and u(·, t) are bounded in [ε,X], and the bound is independent

of both 	 and t ∈ [0, T ]. The quantity

�	(t) :=
∫ X

ε

|u	(x, t) − u(x, t)|dx

thus converges boundedly to zero, and so by the bounded convergence theorem,∫ T

0

∫ X

ε

|u	(x, t) − u(x, t)|dxdt =
∫ T

0
�(t)dt

also converges to zero. By passing to a further subsequence, we have u	 → u boundedly a.e.
in [ε,X]×[0, T ]. By taking a countable decreasing sequence {εi}∞

i=1 with εi → 0 and employ-
ing another diagonalization process, we can arrange that the subsequence of approximations
u	 converges to u a.e. in �T .

In what follows we will use the observations that u(·, t) ∈ L1([0, X]), and u ∈ L1(�T ).
These facts follow easily from Lemma (B.4) along with an application of Fatou’s Lemma.
Also, since g(x) is bounded away from zero if x is bounded away from zero, for any ε ∈
(0, X), the solution u lies in C([0, T ]; L1([ε,X])). Moreover, for the subsequence constructed
above,

u	(·, t) → u in L1([ε,X]) and boundedly a.e. in [ε,X], t ∈ [0, T ]. (B.15)

Our goal now is to show that u is a weak solution. We start with the observation that the bound
(A.1) on the amplitude of the flux is satisfied for the limit solution u; this is a direct result of
Lemma (B.2). To show that (A.2) is satisfied, fix ε ∈ (0, X), and let φ ∈ C1([ε,X] × [0, T ])
with support contained in [ε,X] × [0, T ). We write the scheme in the form

Un+1
j − Un

j

	t
+ 	+

	x
(gjU

n
j + γ naj ) − bn

j U
n
j = 0,
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multiply by φ(xj , t
n)	t	x, and then sum over 0 ≤ n ≤ N	 − 1, 0 ≤ J 	 − 1. After two

summations by parts (one in j , and one in n), and letting φn
j = φ(xj , t

n), we arrive at

	t	x

N	−1∑
n=0

J	−1∑
j=0

Un
j

φn
j − φn−1

j

	t
− 	x

J	−1∑
j=0

UN	

j φN	−1 + 	x

J	−1∑
j=0

U 0
j φ0

j

+ 	t	x

N	−1∑
n=0

J	−1∑
j=0

(gjU
n
j + γ naj )

φn
j − φn−1

j

	x
− 	t

N	−1∑
n=0

γ naJ	φn
J	−1

+ 	t	x

N	−1∑
n=0

J	−1∑
j=0

bn
j U

n
j φn

j = 0.

(B.16)

Here we have used φn
0 = 0 and Un

J	 = 0 to eliminate two boundary sums that would otherwise
appear. Recalling our bound on gjU

n
j +γ naj , we obtain by the bounded convergence theorem

	t	x

N	−1∑
n=0

J	−1∑
n=0

(gjU
n
j + γ naj )

φn
j − φn

j−1

	x

−→
∫ T

0

∫ X

0
(g(x)u + γ (t)a(x))

∂φ

∂x
(x, t)dxdt.

(B.17)

Yet another application of the bounded convergence theorem gives

	t

N	−1∑
n=0

γ naJ	φn
J	−1 −→

∫ T

0
γ (t)a(X)φ(X, t)dt. (B.18)

For the third sum on the first line of (B.16), the bounded convergence theorem gives

	x

J	−1∑
j=0

U 0
j φ0

j −→
∫ X

0
u0(x)φ(x)dx. (B.19)

For the sum on the last line of (B.16), we use that u	 → u in L1([ε,X] × [0, T ]), along with
the assumption that φ vanishes for x ≤ ε to conclude that

	t	x

N	−1∑
n=0

J	−1∑
j=0

bn
j U

n
j φn

j −→
∫ T

0

∫ X

0
b(x, t)uφdxdt. (B.20)

Similarly, using (B.15), along with the fact that φ(x, T ) = 0, we have

	x

J	−1∑
j=0

UN	

j φN	−1
j −→

∫ X

0
u(x, T )φ(x, T )dx = 0. (B.21)

Finally, for the first sum on the first line of (B.16), using the mean value theorem, we write

Un
j

φn
j − φn−1

j

	t
= Un

j

∂φ

∂t
(xj , τ

n),
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where |τn − tn| ≤ 	t . Again using the fact that u	 → u in L1([ε,X] × [0, T ]), along with
the assumption that φ vanishes for x ≤ ε we have

	t	x

N	−1∑
n=0

J	−1∑
j=0

Un
j

φn
j − φn−1

j

	t
−→

∫ T

0

∫ X

0
u
∂φ

∂t
dxdt. (B.22)

Combining (B.17) through (B.22), we see that for our class of regularized test functions, u

satisfies (A.2). We still must show that u satisfies (A.2) for all φ ∈ D . Let φ ∈ D . For ε ∈
(0, X), it is possible to construct a set of regularized approximations φε ∈ C1([ε,X]×[0, T ])
with support in [ε,X] × [0, T ) such that

φε −→ φ,
∂φε

∂t
−→ ∂φ

∂t
boundedly a.e. in �T ,

∂φε

∂x
−→ ∂φ

∂x
in L1(�T ).

For our regularized test functions, we have∫ T

0

∫ X

0

{
u
∂φε

∂t
+ (g(x)u − γ (t)a(x))

∂φε

∂x
+ b(x, t)uφε

}
dxdt

−
∫ T

0
γ (t)a(X)φε(X, t)dt +

∫ X

0
u0(x)φε(x, 0)dx = 0.

(B.23)

Now letting ε ↓ 0, recalling that u ∈ L1(�T ), g(x)u − γ (t)a(x) ∈ L∞(�T ), and applying
the dominated convergence theorem yields (A.2) for ψ ∈ D .

When b = b(x), 1/g ∈ L1([0, X]), we have uniqueness (Theorem A.1), and so the entire
sequence converges to to the unique weak solution u. �
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